286 research outputs found

    Toward a constitutive model for cure dependent modulus of a high temperature epoxy during the cure

    Get PDF
    A constitutive model, based on Kohlrausch-Williams-Watts (KWW) equations, was developed to simulate the evolution of the dynamic relaxation modulus during the cure of a "high temperature' epoxy. The basic assumption of the modelling methodology proposed is the equivalence of the mechanisms underlying the evolution of the glass transition temperature and the relaxation time shift during the cure, leading to the use of a common potential function. This assumption is verified by the comparison of normalized glass transition data and principal relaxation times, which have been found to follow a single master curve. Results show satisfactory agreement between experimental data and model prediction over the range of chemical conversion considered

    Synergistic effects of zinc borate and aluminiumtrihydroxide on flammability behaviour of aerospaceepoxy system

    Get PDF
    The flame retardancy of mono-component epoxy resin (RTM6), widely used for aerospace composites, treated with zinc borate (ZB), aluminium trihydroxide (ATH) and their mixtures at different concentrations have been investigated by morphological and thermal characterization. Cone calorimeter data reveal that combustion behaviour, heat release rate peak (PHRR) and heat release rate average (HRR Average) of RTM6 resin decrease substantially when synergistic effects of zinc borate and aluminium trihydroxide intervene. Thermogravimetric (TGA) results and analysis of the residue show that addition higher than 20% w/w of ZB, ATH, and their mixture greatly promotes RTM6 char formation acting as a barrier layer for the fire development. Depending upon the different used flame additives, SEM micrographs indicate that the morphology of residual char could vary from a compact amalgam-like structure, for the RTM6+ZB system, to a granular structure, characterized by very small particles of degraded resin and additive for the AT

    Structural characterization of phytotoxic terpenoids from Cestrum parqui.

    Get PDF
    Isolation, chemical characterization and phytotoxicity of nine polyhydroxylated terpenes (five C13 nor-isoprenoids, two sesquiterpenes, a spirostane and a pseudosapogenin) from Cestrum parqui LHerr are reported. In this work we completed the phytochemical investigation of the terpenic fraction of the plant and described the structural elucidation of polar isoprenoids using NMR methods. All the configurations of the compounds have been assigned by NOESY experiments. Four new structures have been identified as (3S,5R,6R,7E,9R)-5,6,9-trihydroxy-3-isopropyloxy-7-megastigmene, 5a-spirostan-3b,12b,15a-triol, and 26-O-(30-isopentanoyl)-b-Dglucopyranosyl- 5a-furost-20(22)-ene-3b,26-diol, and as an unusual tricyclic sesquiterpene. The compounds have been assayed for their phytotoxicity on lettuce at the concentrations ranging between 104 and 107 M. The activities of some compounds were similar to that of the herbicide pendimethalin

    Permeability characterization of stitched carbon fiber preforms by fiber optic sensors

    Get PDF
    The in-plane and through thickness permeability of unidirectional stitched carbon fiber preforms have been determined through vacuum infusion tests. The impregnation of various dry preforms with different stitching characteristics has been monitored by fiber optic sensors that have been stitched together with the dry tow to manufacture the dry preform. The experimental infusion times have been fitted by a numerical procedure based on Finite Element (FE) processing simulations. A good agreement between the numerical and experimental infusion times has been found demonstrating the potentiality of the fiber sensor system as suitable tool to evaluate impregnation times and permeability characteristics

    Development of a combined micro-macro mechanics analytical approach to design shape memory alloy spring-based actuators and its experimental validation

    Get PDF
    In this work, an analytical procedure for the preliminary design of shape memory alloy spring-based actuators is investigated. Two static analytical models are considered and interconnected in the frame of the proposed procedure. The first model, based on the works from An, is able to determine the material properties of the SMA components by means of experimental test data and is able to size the SMA component based on the requirements of the system. The second model, based on a work from Spaggiari, helps to design and size an antagonist spring system that allows one to obtain the geometric characteristics of springs (SMA and bias) and the mechanical characteristics of the entire actuator. The combined use of these models allows one to define and size a complex SMA actuator based on the actuation load requirements. To validate the design procedure, static experimental tests have been performed with the entire SMA actuator

    Physiological mechanisms and adaptation strategies of Lactuca sativa L. in response to Olea europaea L. and Ficus carica L. allelochemicals

    Get PDF
    Agro-industrial wastes of Ficus carica L. and Olea europaea L. represent great sources of bioactive phenolic compounds that would be actively involved in sustainable development. Most of these wastes possess a valuable source of phytotoxic compounds that would be used as potential bioherbicides, but their function and mechanisms of action in cultivated crops remain far to be understood. In this study, we investigate the biochemical and physiological mechanisms of action of fig and olive allelochemicals extracts in lettuce as a model plant for weed species studies. Results revealed that these allelochemicals triggered an oxidative stress through cell membrane damage in lettuce roots and leaves, which was mitigated by various adaptive responses. Therefore, an intricate defense system was implicated by the increase of enzymatic and non-enzymatic antioxidants in lettuce tissues. This adaptive physiological response was highly correlated with the regulation of the phenylpropanoid pathway through the distinguished activation of phenylalanine ammonia-lyase by 98% and phenolic accumulation by 85% under olive and fig leaves aqueous extracts. The outcomes of this study will help understanding the response of cultivated crop to fig and olive phenolic compounds that can be selective in their actions, or the plants can be selective in their responses

    Flexural properties of the epoxy resin filled with single and hybrid carbon nanofillers

    Get PDF
    The aim of this paper was to estimate the effect of moisture and temperature on the flexural properties of the epoxy filled with single and hybrid carbon nanofillers (CNTs and CNFs) and to reveal the most environmentally stable NC. Water absorption at 70 °C until equilibrium moisture content and heating at 70 °C for 4 weeks were followed by freezing at - 20 °C for 8 weeks. Microstructural characterization of optical images revealed homogeneous dispersion of all carbon nanofillers in the epoxy resin at microscale. Positive nanofiller effects were found for sorption, flexural and thermophysical characteristics of the epoxy resin. The most environmentally stable NC was epoxy filled with 0.1 wt. % of CNTs/CNFs hybrid, which had the lowest effect of temperature and moisture on mechanical characteristics, along with the lowest equilibrium water content and diffusivity

    Cure induced property changes and warpage in thermoset resins and composites

    Get PDF
    The aim of the present work was to investigate the evolution of thermal and mechanical properties during the polymerisation of a thermosetting resin that is typical those used as the matrix in advanced composites. The mechanism of the cure reaction was studied using differential scanning calorimetry (DSC) in both dynamic (thermal scanning) and isothermal modes, and procedures for correlating the two types of calorimetric data were developed. The model finally chosen encapsulates the diffusion- controlled mechanism of reaction by establishing a one-to-one relationship between the degree of cure and the glass transition temperature, which is assumed to be a structural parameter during the polymerisation. A detailed experimental investigation of specific heat capacity, thermal conductivity, secondary transformations (gelation and vitrification), thermal and chemical volume changes and stress relaxation moduli was carried out to establish a suitable database for the resin. Where possible, a closed analytical model was employed; alternatively, an interpolation procedure was developed evaluate the changes in a selected property during a more complex temperature profile. Experimental equipment was developed to perform shrinkage measurements on the neat resin system; the results obtained were later compared with experimental data from standard liquid dilatometry tests. A simulation of the curing of a bi-material cantilever beam is presented as a test case highlight the influence of property changes on the final curvature. Sample curvature during the experiment was recorded using a digital camera and then analysed using graphical software. The correlation between the observed values of curvature and the results of a finite element based simulation was used to validate the kinetics model and property modelling for the chosen thermosetting resin.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Experimental and numerical assessment of fibre bridging toughening effects on the compressive behaviour of delaminated composite plates

    Get PDF
    Increasing the Mode I inter-laminar fracture toughness of composite laminates can contribute to slowing down delamination growth phenomena, which can be considered one of the most critical damage mechanisms in composite structures. Actually, the Mode I interlaminar fracture toughness (GIc) in fibre-reinforced composite materials has been found to considerably increase with the crack length when the fibre bridging phenomenon takes place. Hence, in this paper, the fibre bridging phenomenon has been considered as a natural toughening mechanism able to replace embedded metallic or composite reinforcements, currently used to increase tolerance to inter-laminar damage. An experimental/numerical study on the influence of delamination growth on the compressive behaviour of fibre-reinforced composites characterised by high sensitivity to the fibre bridging phenomenon has been performed. Coupons, made of material systems characterised by a variable toughness related to a high sensitivity to the fibre bridging phenomenon and containing artificial through-the-width delaminations, were subjected to a compressive mechanical test and compared to coupons made of standard material system with constant toughness. Out-of-plane displacements and strains were monitored during the compression test by means of strain gauges and digital image correlation to assess the influence of fibre bridging on delamination buckling, delamination growth and on the global buckling of the specimens, including buckling shape changes. Experimental data were combined with a numerical study, performed by means of a virtual crack closure technique based procedure, named SMart Time XB-Fibre Bridging (SMXB-FB), able to mimic the crack bridging effect on the toughness properties of the material system. The combination of numerical results and experimental data has allowed the deformations and the buckling shape changes to be correlated to the onset and evolution of damage and, hence, contributes to improving the knowledge on the interaction of the failure mechanisms in the investigated composite specimens

    Modelling the damage evolution in notched omega stiffened composite panels under compression

    Get PDF
    In this paper, the compressive behaviour of an omega stiffened composite panel with a large notch damage has been investigated. The influence of intra-laminar and inter-laminar damage onset and evolution on the compressive behaviour of a stiffened panel, characterised by a cut-out located in the middle bay and oriented at 45° with respect to the load direction, has been studied. A numerical model, taking into account delamination and fibre-matrix damage evolution, respectively, by means of cohesive elements and Hashin's failure criteria together with material degradation rules, has been adopted. By comparing the performed numerical analyses, taking into account intra-laminar and inter-laminar damages, the effects of the interaction between delaminations and fibre-matrix damage in the large notch area on the global compressive behaviour of the omega stiffened composite panel have been assessed and critically discussed
    • …
    corecore